Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance. However, achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions. In-situ transmission electron microscopy (TEM) is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments. These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries. This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems, including atomic-scale structural imaging, strain field imaging, electron holography, and integrated differential phase contrast imaging. Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution, ionic valence state changes, and strain mapping, ion transport dynamics. The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available June 25, 2026
-
Intermolecular interactions play a critical role in the binding strength of molecular assemblies on surfaces. The ability to harness them enables molecularly-tunable interfacial structures and properties. Herein we report the tuning of the intermolecular interactions in monolayer assemblies derived from organothiols of different structures for the creation of nanoelectrode arrays or ensembles with effective mass transport by a molecular-level perforation strategy. The homo- and hetero-intermolecular interactions can be fully controlled, which is demonstrated not only by thermodynamic analysis of the fractional coverage but also by surface infrared reflection absorption and X-ray photoelectron spectroscopic characterizations. This understanding enables controllable electrochemical perforation for the creation of ensembles or arrays of channels across the monolayer thickness with molecular and nanoscale dimensions. Redox reactions on the nanoelectrode array display molecular tunability with a radial diffusion characteristic in good agreement with theoretical simulation results. These findings have implications for designing membrane-type ion-gating, electrochemical sensing, and electrochemical energy storage devices with molecular level tunability.more » « less
-
Assessing Plasmonic Nanoprobes in Electromagnetic Field Enhancement for SERS Detection of BiomarkersThe exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody–antigen–antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core–shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.more » « less
-
Abstract The ability to control phase structures and surface sites of ultrasmall alloy nanoparticles under reaction conditions is essential for preparing catalysts by design. This is, however, challenging due to limited understanding of the atomic‐scale phases and their correlation with the ensemble‐averaged structures and activities of catalysts during catalytic reactions. We reveal here a dynamic structural stability of alumina‐supported ultrasmall and equiatomic copper‐gold alloy nanoparticles under reaction conditions as a model system in the in situ/operando study. In situ atomic‐scale morphological tracking under oxygen reveals temperature‐dependent dynamic crystalline‐amorphous dual‐phase structures, showing dynamic stability over an elevated temperature range. This atomic‐scale dynamic phase stability coincides with a “conversion plateau” observed for carbon monoxide oxidation on the catalyst. It is substantiated by the stable lattice ordering/disordering structures and surface sites with oscillatory characteristics shown by operando ensemble‐average structural tracking of the catalyst during the oxidation reaction. The understanding of the atomic‐scale dynamic phase structures in correlation with the ensemble‐average dynamic ordering/disordering phase structures and surface sites provides fresh insights into the unique synergy of the supported alloy nanoparticles. This understanding has implications for the design and structural tuning of active and stable ultrasmall alloy catalysts under elevated temperatures.more » « less
-
Understanding the structural ordering and orientation of interfacial molecular assemblies requires an insight into the penetration depth of the probe molecules which determines the interfacial reactivity. In contrast to the conventional liquid probe-based contact angle measurement in which penetration depth is complicated by the liquid cohesive interaction, we report here a new approach that features a simple combination of vaporous hexane, which involves only van der Waals interaction, and quartz crystal microbalance operated at the third harmonic resonance, which is sensitive to sub-monolayer (0.2%) adsorption. Using this combination, we demonstrated the ability of probing the structural ordering and orientation of the self-assembled monolayers with a sensitivity from penetrating the top portion of the monolayers to interacting with the very top atomic structure at the interface. The determination of the dependence of the adsorption energy of vaporous hexane on the penetration depth in the molecular assembly allowed us to further reveal the atomic-scale origin of the odd–even oscillation, which is also substantiated by density functional theory calculations. The findings have broader implications for designing interfacial reactivities of molecular assemblies with atomic-scale depth precision.more » « less
-
Abstract As one of the noninvasive screening and diagnostic tools for human breath monitoring of various diseases, chemiresistive devices with nanomaterials as the sensing interfaces for detecting volatile organic compounds (VOCs) have attracted increasing interests. A key challenge for the practical applications is an effective integration of all components in a system level. By integrating with the system components, it provides reliable and rapid results as a fast‐screening method for healthcare, safety, and environmental monitoring. This paper highlights some of the latest developments in chemiresistive sensors designed for the detection of VOCs and human breaths. It begins with a brief introduction to the fundamental principles of chemiresistive sensors with nanoparticle‐structured sensing interfaces. This is followed by a discussion of the recent fabrication methods, with an emphasis on nanostructured materials. Some of the recent examples will be highlighted in terms of recent innovative approaches to sensor applications and system integrations. Challenges and opportunities will also be discussed for the advancement and refinement of the chemiresistive sensor technologies in breath screening and monitoring of diseases.more » « less
An official website of the United States government
